
Learning About The Future and Dynamic

E¢ ciency

Alex Gershkov and Benny Moldovanu1

17.4.2008

1We wish to thank three anonymous referees for their very helpful comments. We are

grateful for �nancial support from the German Science Foundation and from the Max Planck

Society. Gershkov, Moldovanu: Department of Economics, University of Bonn, Lennestr. 37,

53113 Bonn. Emails: alex.gershkov@uni-bonn.de, mold@uni-bonn.de.



Learning About The Future and Dynamic E¢ ciency

Abstract: In both static and dynamic, independent private values se-

tups, the e¢ cient allocation is implementable if the distribution of agents�

values is known. Lack of knowledge about the distribution is inconsequen-

tial in the static case. But, if distribution of agents�values is not known

in a dynamic framework, and if the designer gradually learns about it by

observing present values, endogenously arising informational externalities

may prevent the implementation of the e¢ cient allocation if present obser-

vations have a large impact on expectations about the future. We provide

necessary and su¢ cient conditions for the e¢ cient allocation to be imple-

mentable.

We analyze the conditions under which an e¢ cient allocation of resources is achiev-

able in a dynamic private values setting where the designer gradually learns about the

distribution of agents�values. As an application, consider the sequential allocation

of scarce spectrum to emerging technologies. Whenever a new technology appears, a

benevolent designer is faced with a problem: should he allocate a valuable chunk of

spectrum right now while forfeiting, for a long period of time, the option of allocating

it to a possibly superior, future technology? It makes sense to assume here that current

�rms have a better knowledge of their technological prowess than the designer, and

that the designer�s assessment of future technological possibilities is improved by ob-

serving the current technology. If technology owners are strategic, we show below that

the learning process about the future disturbs the ability to extract the information

necessary for e¢ cient decision making. Another good example is hiring by an organi-

zation who �lls positions at di¤erent hierarchy levels over time. While all candidates

prefer higher level positions, some aspect of their ability to perform the needed tasks

at each level is privately known to the candidates. If contracts with current employees

are di¢ cult to adjust, the designer must carefully compare the quality of present can-

didates - which can serve as a signal about the "market" - to the expected quality of

candidates that may become available in the future. Finally, consider a �rm allocating
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franchises in a country where it did not operate before, and where contractual clauses

or other impediments prevent reallocation during a signi�cant period of time. (Local)

potential franchisees may have some superior information regarding future pro�tabil-

ity in the respective market, and hence the elicitation of private information is crucial

for a franchisor that is supposed to get a share of the future pro�ts.

The above examples are typical for a large class of situations where a decision maker

faced with a �xed amount of resources needs to distribute them over time to a sequence

of randomly arriving opportunities1. A transaction typically consists of a physical and

a monetary part. An important assumption in our model is that both parts cannot be

made contingent on information revealed in the future by other strategic agents. This

assumption is natural in contexts where new information arrives with a signi�cant

delay.

The theoretical study of the e¢ cient allocation of resources to privately informed,

strategic agents revolves around the seminal, static analysis due to William Vickrey,

Edward Clarke and Theodor Groves (Vickrey (1961), Clarke (1971), Groves (1973)).

The VCG mechanisms align private and social interests via individual payments that

correspond to the externality imposed by an agent�s presence on others. For the VCG

construction to work, the externality imposed by an agent on others cannot depend on

that agent�s information. This requirement is ful�lled in the standard private values

framework.

A generalization of the marginal externality idea allows the implementation of the

sequentially e¢ cient allocation also in dynamic, private values settings, as long as the

distribution of values is known to the designer (see David C. Parkes and Satinder

Singh (2003)). Knowledge of this distribution is crucial since, in order to compute

the monetary transfers that align private and social interests, the designer needs to

1More generally, the phenomena analyzed here occur whenever a decision maker needs to learn

about the future from current, strategic agents while taking irreversible actions that also a¤ect the set

of future, feasible decisions. Numerous aspects of public policy and regulation (e.g., environmental

decisions) as well as commercial decisions taken under conditions of unknown demand (e.g., by airline,

hotel or freight companies) fall within this class.
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calculate the correct expected externality imposed by an agent over time. Susan Athey

and Ilya Segal. (2007) and Dirk Bergemann and Juuso Valimäki (2007) generalize the

VCG analysis to a framework where agents obtain private information over time,

focusing on budget balancedness, and on individual rationality, respectively.

The assumption, used in most studies, that the designer knows the (future) distrib-

ution of agents�values is unlikely to be ful�lled in most applications. This assumption

is inconsequential in the static case since the VCG mechanism implements the e¢ cient

allocation in dominant strategies. When learning about the distribution becomes nec-

essary, the information revealed by an agent plays a dual role: it a¤ects both the

value of the current allocation, and the option value of any future allocation. As a

consequence, the expected externality imposed by a present agent on others - which is

important in order to implement the e¢ cient allocation - becomes dependent on that

agent�s information. In other words, learning generates indirect informational external-

ities2. In a nut-shell, a necessary condition for extracting truthful information about

values is the monotonicity of the allocation rule: agents with higher values should not

be worse-o¤ than contemporaneous agents with lower values. This requirement, how-

ever, may not be satis�ed by the dynamic e¢ cient allocation: after observing a present

high value, a "su¢ ciently optimistic" designer wants to keep, say, a high quality object

for future allocation since he may expect even higher values in the future; in contrast,

he may want to allocate the object right now if the present agent�s value is lower, in

which case the designer becomes "su¢ ciently pessimistic" about the future. E¢ cient

implementation will be possible only if, roughly speaking, the designer�s beliefs do not

change dramatically after each new observation. This insight translates to a private

values dynamic framework with learning an observation made by Eric Maskin (1992) in

a static framework with direct informational externalities (also called interdependent

values).

Partha Dasgupta and Eric Maskin (2000) and Philippe Jehiel and BennyMoldovanu

(2001) have examined both the possible extensions and limitations of the VCG analysis

2The implementation of any given allocation function - not necessarily the e¢ cient one - where

the option values depends on the current information will raise similar issues.
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to static frameworks where the values of agents depend on information held by others.

In particular, e¢ cient implementation - via generalized VCG mechanisms - is possible

only if the private information is one-dimensional and if a single-crossing condition

holds3. Single crossing translates here into the requirement that beliefs change only

gradually.

An important di¤erence between our setting with private values and learning, and

a standard setting with interdependent values is that in the former "interdependence"

may or may not arise depending on the social choice function to be implemented. With

learning, the designer uses today�s signal in order to adjust the option value attached to

the future. This creates problems for dynamic e¢ ciency because externality payments

(needed for a Clarke-Groves-Vickrey type of mechanisms) involve precisely these option

values. This problem may not arise for other social choice functions.

The e¢ cient policy is always implementable if the designer is able to delay monetary

transfers till after all observations about types have been made, analogously to insights

developed by Claudio Mezzetti (2004) for the static case with interdependent values,

and by Athey and Segal (2007) for a dynamic model where private information arrives

over time.

The above basic insights are both simple and general. In order not to obscure their

simplicity, we present then in the lean and elegant dynamic assignment framework due

to Cyrus Derman, Gerald Lieberman and Sheldon Ross (1972) (DLR hereafter). In

the DLR model, a �nite set of heterogenous, commonly ranked objects needs to be

assigned to a set of agents who arrive one at a time. After each arrival the designer

decides which object to assign to the present agent. In their model both the attribute

of the present agent (that determines his value for the various available objects) and

the future distribution of attributes are known to the designer. We �rst show that the

e¢ cient policy characterized by DLR continues to be implementable even if arriving

agents have private information about their attributes.4 (Bayesian) learning in the

3Thomas Kittsteiner and Benny Moldovanu (2005) used these insights in a dynamic auction model

for queueing environments where agents have private information about own processing times.
4In contrast to DLR, who focused on dynamic welfare maximization, there is an extensive litera-

ture on dynamic revenue maximization (See Talluri and Van Ryzin (2004)). Gershkov and Moldovanu
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complete-information DLR model has been analyzed by Christian Albright (1977).

In both these papers, the agents do not act strategically, and hence the issues of

implementability/monetary payments do not arise. Our main results are presented

in a model that adds private information about attributes, and strategic behavior to

Albright�s learning model.

Ilya Segal (2003) analyzes revenue maximization in a static environment with an

unknown distribution of the agents�values. Although he deals with a private values en-

vironment, Segal observes that, analogously to what happens in our model, each agent

has an informational e¤ect on others. As a consequence, in the revenue maximizing

procedure, the terms of trade for a given agent will be a¤ected by information con-

veyed by others. The type of problems highlighted here cannot occur in Segal�s static

model since a standard VCG mechanism always leads there to the e¢ cient outcome.

The extensive literature on search considered the optimal stopping problem faced by

a decision maker who is confronted with a stream of price quotations generated from

some unknown, exogenous distribution.5 In his seminal paper, Michael Rothschild

(1974) derived su¢ cient conditions for the optimal policy to satisfy the reservation

price property, i.e., stopping search at any price should imply stopping also at all

more favorable prices. In Rothschild�s model, price quotations are not generated by

strategic agents, and thus there are no information revelation problems, nor incentive

constraints. Thus the monotonicity requirement behind the reservation price property

is not due there to an explicit economic constraint, whereas monotonicity is tightly

related to incentive compatibility in our model.

Other strands of the literature have emphasized the trade-o¤ between the maxi-

mization of current versus future pro�ts in the presence of less than perfect informa-

tion. For example, Leonard J. Mirman et al., (1993) and Godfrey Keller and Sven

Rady (1999) analyze optimal experimentation by a monopolist facing an unknown de-

(2008) explore the relationship between revenue maximizing and welfare maximizing policies. Riley

and Zeckhauser (1983) considered a single object revenue-maximizing procedure where there is learn-

ing about the distribution of the agents�values.
5For an extensive survey of the classical search literature, see Steven Lippman and John J. McCall

(1976).
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mand6, while Xavier Freixas et al., (1985 ), Martin L. Weitzman (1980) focus on the

so-called ratchet e¤ect : in a repeated principal-agent interaction, leakage of private

information in some period a¤ects the optimal reward scheme at future periods, and

the agent choose his present action in order to manipulate the principal�s beliefs.7

The paper is organized as follows. In Section I we present a non-technical illus-

tration of our main idea. Section II describes the model. In Section III we show that

the DLR e¢ cient dynamic allocation can be implemented, via appropriate payments,

also in a private values framework with incomplete information about the types of

arriving agents (while assuming that the designer knows the distribution of types). In

Section IV, the main section, we show that the complete information, e¢ cient dynamic

assignment need not be implementable if the designer, who does not know the distri-

bution of types, updates his belief about this distribution after each observation. We

also o¤er several su¢ cient conditions under which e¢ cient implementation is possible.

Finally, we show that the dynamic e¢ cient assignment can always be implemented if

all payments can be delayed until the end of the entire allocation process. Section V

concludes.

I. An Illustration

An indivisible object can be allocated in one of two periods. Agent i; i = 1; 2 is present

in period i only and has a valuation xi for the object. Both physical and monetary

transfers to an agent must be made "online", in the period where they are present

(i.e., they cannot be delayed and made contingent on information that may arrive at

a later point in time).

Assume �rst that valuations are private and independently drawn from the interval

6The problem of the single decision maker that has to make a sequence of decisions in an unknown

environment is also considered in Philippe Aghion et al. (1991). Their main result displays conditions

under which, eventually, the decision maker adopts the correct decision.
7This is also the subject of a small literature on dynamic regulation where it is shown that regu-

latory lags - the practice whereby information revealed by the �rm is not immediately utilized - can

be bene�cial (see Jean-Jacques La¤ont and Jean Tirole (1993))
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[0; 2], according to a uniform distribution. The complete information dynamic e¢ cient

allocation is to allocate the object to the �rst arriving agent if x1 � 1, and allocate the

object to the second agent otherwise (note that 1 is the expectation of the value for the

second agent). This allocation can be implemented also in the incomplete information

case by posting a price of 1 in the �rst period, and a price of 0 in the second.

Assume now that the designer does not precisely know the distribution of values:

with probability 0:5 he believes that the distribution is uniform on the interval [0; 1];

while with probability 0:5 he believes that it is uniform on [1; 2]: Let us compute �rst

the complete information e¢ cient dynamic allocation: If the x1 < (>)1; the posterior

is that x2 is uniformly distributed on [0; 1] ([1; 2]). This yields

E[x2=x1] =

8>>><>>>:
0:5 if x1 < 1

1 if x1 = 1

1:5 if x1 > 1

Thus, the �rst agent should get the object if x1 2 [0:5; 1] [ [1:5; 2]; and the set of

types for which agent 1 should get the object in the e¢ cient allocation is not convex.

To see that this allocation cannot be implemented, assume that the designer makes a

(possibly negative) transfer of t1 to the �rst agent if this agent announces bx1 2 [0:5; 1]
and a transfer of � 1 if this agent announces bx1 2 [1; 1:5]: Implementability of the

e¢ cient allocation requires that:

x1 + t1 � � 1 for any x1 2 [0:5; 1]

� 1 � x1 + t1 for any x1 2 [1; 1:5]

While the �rst inequality implies t1 � � 1�0:5, the second one implies t1 � � 1�1:5.

Together, these inequalities yield 0:5+ t1 � 1:5+ t1 , 0:5 � 1:5, a contradiction. The

problem is that the report of the �rst agent has a signi�cant impact on the updating

process of the designer�s belief. The information gained through learning is used to

the detriment of the �rst agent who becomes then reluctant to report truthfully.8

8The knowledgeable reader will notice the similarity of this example to the original example pro-

vided by Maskin (1992) for the static setting without learning, but with interdependent values.
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The complete information e¢ cient allocation can be implemented if it is possible

to delay the transfer to the �rst agent until after the second period. The following

scheme does the job:

1. If bx1 2 [0:5; 1] [[1:5; 2] the �rst agent gets the object and pays bx2.
2. If bx1 2 [0; 0:5][ [1; 1:5] the �rst agent does not get the object and pays nothing.
3. If the object has not been allocated in the �rst stage it is assigned to the second

agent without any further transfers9.

In the above scheme, the �rst agent pays the realized externality, which is inde-

pendent of his own report. This corrects his incentives to truthfully report his private

information.

II. The Model

There are m items and n agents. Each item i is characterized by a "quality" qi; and

each agent j is characterized by a "type" xj. If an item with quality qi � 0 is assigned

to an agent with type xj then this agent enjoys a utility given by qixj. Getting no

item generates utility of zero. The goal is to �nd an assignment that maximizes total

welfare. In a static problem, total welfare is maximized by assigning the item with the

highest quality to the agent with the highest type, the item with the second highest

quality to the agent with the second highest type, and so on... This assignment rule

is called "assortative matching".

Here we assume that agents arrive sequentially, one agent per period of time, that

each agent can only be served upon arrival (there is no recall), and that assigned

items cannot be reallocated in the future. Let period n denote the �rst period, period

n� 1 denote the second period, ..., period 1 denote the last period. If m > n we can

obviously discard the m � n worst items without welfare loss. If m < n we can add

9In this example, the second agent is always indi¤erent between lying and telling the truth, and

we assume that he tells the truth.
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"dummy" objects with qi = 0. Thus, we can assume w.l.o.g. that m = n. While

the items�properties 0 � q1 � q2::: � qm are assumed to be known, the agents�types

are assumed to be independent and identically distributed random variables Xi on

[0;+1) with common c.d.f. F . We consider two distinct versions of this model:

1. Incomplete Information: Arriving agents privately know their type, but the

designer only knows the distribution F from which types are sampled. This

yields a standard private values models with independent types.

2. Incomplete Information + Learning: Arriving agents privately know their

type, and the distribution from which types are sampled, F , is unknown to

the designer. At stage n, the belief about F is originally described by a prior

distribution � = �n, which is updated as successive types are observed. The

posterior belief about the distribution of types after observing types xn; :::; xm is

given by �m�1 (xn; :::; xm). For any possible belief, we assume that the implied

marginal distribution of types has a �nite mean.

III. Dynamic E¢ ciency under Incomplete Informa-

tion

Here we analyze the case where the designer cannot observe arriving types, but knows

the distribution F from which types are drawn. We start with the characterization of

the set of implementable allocations. Without loss of generality, we restrict attention

to direct mechanisms where every agent, upon arrival, reports his characteristic xi

and where the mechanism speci�es which item the agent gets, and a payment. Both

physical allocation and payment at period k may, in principle, depend on the signals

previously observed.

Let the history at period k, Hk 2 [0;1)n�k, be the ordered set of all signals

reported by the agents that arrived at periods n; :::; k + 1.10 An allocation policy is

10The history should also include also the set of the past decisions. Since the set of the present

available objects contains all the relevant information, we omit this part for notational simplicity.
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called deterministic if, at any period k, and for any possible type of the agent that

arrives at k it applies a non-random allocation rule.

Denote by �k : Hk�[0;1)��k ! �k a deterministic allocation policy for period k,

where �k is the set of available objects at k, and denote by Pk : Hk� [0;1)��k ! R

the associated payment rule. Note that the cardinality of set �k is k.

The next Proposition shows that a deterministic allocation policy is implementable

if and only if, at each stage, it is based on a partition of the agents�type space.

Proposition 1 Assume that qj 6= ql for any qj; ql 2 �k; j 6= l. A deterministic

policy �k is implementable if and only if there exist k + 1 functions 0 = y0;�k (Hk) �

y1;�k (Hk) � y2;�k (Hk) � ��� � yk;�k (Hk) =1, such that x 2 (yj�1;�k (Hk) ; yj;�k (Hk))

) �k (Hk; x;�k) = q(j) where q(j) denotes the j�th lowest element of the set �k.
11

Proof. =) If two reports lead to the same physical allocation, then, in any incentive

compatible mechanism, the associated payments should be the same as well. Therefore,

a direct mechanism is equivalent here to a scheme where the arriving agent at period

k chooses an object and a payment from a menu (qj; Pj)
k
j=1. For any history Hk, if

some type x prefers the pair (qm; Pm) over any other pair (ql; Pl) with qm > ql, then

any type ex > x also prefers (qm; Pm) over (ql; Pl). This implies that �k (Hk; ex;�t) �
�k (Hk; x;�t) for any k, Hk and �t. Therefore an agent arriving at period k gets object

q(j) if he reports a type contained in the interval (yj�1;�k (Hk) ; yj;�k (Hk)). A similar

argument shows that �t (Hk; yi;�k (Hk+1) ;�t) 2 fqi; qi+1g for i 2 f1; 2; :::; kg.

(= The proof is constructive. Given a partition-based allocation policy, we design

a payment scheme Pj that, for any j 2 f1; :::; kg; will induce type x 2 (yj�1;�k (Hk) ; yj;�k (Hk)]

to choose the object with quality q(j). Without loss of generality, we assume that an

agent who is indi¤erent between two best price-quality pairs in the menu (qj; Pj)
k
j=1

chooses the object with lower type among the two. Consider then the following pay-

ment scheme

Pj (Hk; x;�k) =

jX
i=2

(q(i) � q(i�1))yi�1;�k (Hk) . (1)

11Types at the boundary between two intervals can be assigned to either one of the neighboring

elements of the partition. That is �t (Hk; yi;�k (Hk) ;�t) 2 fqi; qi+1g, i = 1; 2; ::; k � 1.
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for x 2 (yj�1;�k (Hk) ; yj;�k (Hk)] and P1 (Hk; xk;�k) = 0. Note that type x =

yj;�k (Hk) is indi¤erent between
�
q(j); Pj

�
and

�
q(j+1); Pj+1

�
. Moreover, any type

above yj;�k (Hk) prefers
�
q(j+1); Pj+1

�
over

�
q(j); Pj

�
, while any type below, prefers�

q(j); Pj
�
over

�
q(j+1); Pj+1

�
. Therefore, any type x 2 (yj;�k (Hk) ; yj+1;�k (Hk)] prefers�

q(j+1); Pj+1
�
over any other pairs in the menu.12

We assumed above that the inventory available at k contains only objects with

distinct types. If there are some identical objects, there exist other implementable

policies that do not take the form of partitions. But, for each such policy, there exists

another implementable policy that is based on a partition, and that generates the same

expected utility for all agents and for the designer.

Derman, Lieberman and Ross (1972) have characterized the allocation policy that

maximizes total expected welfare in a complete-information model where the designer

gets to observe the type of each arriving agent (monetary incentives for information

revelation are not needed then). Using the DLR characterization, and Proposition 1,

we obtain:

Theorem 2 1. (DLR, 1972) The complete information, welfare maximizing policy

has the following form: Consider the arrival of an agent with type x in period

k � 1; There exist constants 0 = a0;k � a1;k � a2;k::: � ak;k =1 that depend on

the distribution F but not on the q0s, such that the policy assigns the item with

the i� th smallest quality if x 2 (ai�1;k, ai;k]: 13

2. The �rst-best policy is implementable under incomplete information.

The second part follows from Proposition 1 since the welfare maximizing policy

identi�ed in the �rst part is obviously partition-based. Thus, incomplete information

12The payment given in (1) is not the only one implementing the partition 0 � y1;�k (Hk) �

y2;�k (Hk) � � � � � yk;�k (Hk) = 1. Adding to the payment any function that does not depend on

the reported type of the agent will not change the implemented partition. However, in any individually

rational mechanism the payment for the worst object P1 should be non-positive.
13Each ai;k equals the expected value of the agent�s type to whom the item with i � th smallest

type is assigned in a problem with k � 1 periods. The optimal policy has a similar form for any

supermodular reward function, but then the constants ai;k may also depend on the q0s.
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per-se is not an obstacle towards achieving �rst-best dynamic e¢ ciency. Note also that

the above described policy is history independent: the e¢ cient cuto¤s at any stage k

are not a¤ected by previous decisions, nor by previous reports.

IV. Dynamic E¢ ciency under Incomplete Informa-

tion and Learning

In this section we investigate the dynamic welfare maximization problem under the

more realistic assumption that the distribution of types is unknown. Each inference

about an agent�s type reveals now some information about the distribution of (future)

agents�types. This information can be used to improve the forecast of types arriving

at later stages, and thus to improve the decision making process where present and

option values are compared.

Although history dependent allocation rules were not necessary for the implemen-

tation of the �rst best policy without learning, the general implementation result,

Proposition 1, allowed for such rules. Moreover, recall that its proof used only the

incentive compatibility constraints of the currently arriving agent. Therefore, an anal-

ogous result holds even if the distribution of agents�types is unknown, and if learning

takes place. Roughly speaking, an implementable policy may use the current infor-

mation revealed by the period k agent only to determine the allocation at all future

stages:

Proposition 3 Assume that qj 6= ql for any qj; ql 2 �k; j 6= l. A deterministic

policy �k is implementable if and only if there exist k + 1 functions 0 = y0;�k (Hk) �

y1;�k (Hk) � y2;�k (Hk) � ��� � yk;�k (Hk) =1, such that x 2 (yj�1;�k (Hk) ; yj;�k (Hk))

) �k (Hk; x;�k) = q(j) where q(j) denotes the j�th lowest element of the set �k.
14

Proof. The proof is similar to the proof of Proposition 1 and it is omitted here15.
14Types at the boundary between two intervals can be assigned to either one of the neighboring

elements of the partition. That is �k (Hk; yi;�k (Hk) ;�t) 2 fqi; qi+1g, i = 0; 2; ::; k � 1.
15For the case of several identical objects see the remark after Proposition 1.
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The next result extends the DLR insight to the setup with learning:

Theorem 4 (Albright, 1977)

1. The complete information, welfare maximizing policy has the following form:

Assume that types xn; ::; xk+1 have been observed, and consider the arrival of an

agent with type xk in period k � 1: There exist functions 0 = a0;k (�k�1(Hk; xk)) �

a1;k (�k�1(Hk; xk)) � a2;k (�k�1(Hk; xk)) ::: � ak;k (�k�1(Hk; xk)) = 1 , that do

not depend on the q0s, such that the policy assigns the item with the i�th smallest

quality if xk 2 (ai�1;k (�k�1(Hk; xk)) ; ai;k (�k�1(Hk; xk))]:

2. Each ai;k+1 (�k(Hk+1; xk+1)) equals the expected value of the agent�s type to which

the item with i� th smallest type is assigned in a problem with k periods before

the period k signal is observed. These functions are related to each other by the

following recursive formulae:

ai;k+1 (�k(Hk+1; xk+1)) =

Z
Ai;k

xdG(x) +

Z
Ai;k

ai�1;k (�k�1(Hk; xk)) dG(x)

+

Z
Ai;k

ai;k (�k�1(Hk; xk)) dG(x) (2)

where G is the distribution of theX�s derived from the current posterior �k�1(Hk; xk);

and Ai;k = fx : x � ai�1;k (�k�1(Hk; xk))g,

Ai;k = fx : ai�1;k (�k�1(Hk; xk)) < x � ai;k (�k�1(Hk; xk))g and

Ai;k = fx : x > ai;k (�k�1(Hk; xk))g.

In marked contrast to the case with a known distribution, the e¢ cient policy at

stage k is described in terms of cuto¤s that generally depend on the type of the agent

arriving at k because every observation a¤ects the designer�s beliefs about the char-

acteristics of forthcoming agents. This feature creates the implementation problems,

and the crucial question is whether we can alternatively describe the e¢ cient policy at

any stage k in terms of cuto¤s that are independent of the type of the agent arriving

at k- such a description will involve the existence of certain �xed points.16

16Morgan (1985) focused on the existence of �xed points that do not depend on current information
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Out next Theorem exhibits a necessary and su¢ cient condition for the imple-

mentability of the �rst-best policy in the incomplete-information + learning frame-

work, and an additional su¢ cient condition that can be easily checked in applications.

Theorem 5 1) Consider the �rst-best policy, characterized in Theorem 4. This policy

is implementable if and only if for any period k, for any object qi; and for any belief

�k�1(Hk; xk), the set Ai;k = fxk : ai�1;k (�k�1(Hk; xk)) < xk � ai;k (�k�1(Hk; xk))g is

convex (i.e., it is an interval).

2) If for any k, Hk and for any i 2 f0; ::; kg, the cuto¤ ai;k
�
�k�1(Hk; xk)

�
is di¤er-

entiable with respect to the signal of the agent arriving at k, and @
@xk
ai;k (�k�1(Hk; xk)) <

1 for any xk and Hk, then, the �rst-best policy can be implemented also under incom-

plete information.17

Proof. By Theorem 4 , the current agent k gets the object with quality qi if and only

if his type belongs to Ai;k = fxk : ai�1;k (�k�1(Hk; xk)) < xk � ai;k (�k�1(Hk; xk))g.

The �rst claim follows then immediately from Proposition 3: by Theorem 4, if the

sets Ai;k are convex for any i, then for any m; l 2 f1; :::; kg with m > l it must hold

that that inffx : x 2 Am;kg � supfx : x 2 Al;kg. In other words, the intervals Ai;k are

ordered.

For the second part, recall that ai;k (�k�1(Hk; xk)) equals the expected value of

the agent�s type to which the item with i-th smallest type is assigned. This yields

ai;k (�k�1(Hk; xk)) � 0 for any i, k and �k�1. The inequality @
@xk
ai;k (�k�1(Hk; xk)) < 1

implies then that the equation x = ai;k (�k�1 (Hk; x)) has a unique solution, which we

denote by a�i;k (Hk). By Theorem 4 we know that ai;k (�k�1(Hk; xk)) � ai�1;k (�k�1(Hk; xk)),

which, in turn, implies that a�i;k (Hk) � a�i�1;k (Hk). Therefore, the set
�
a�i;k (Hk)

	k
i=0

partitions agent�s k type space. Moreover, by de�nition, the cuto¤s in this set are

independent of agent�s k type. Finally, if xk > ai�1;k (�k�1(Hk; xk)), the de�nition

for the determination of the reservation value function in a complete information, optimal search

model with learning. The goal was to �nd simpler ex-ante calculable formulas for probabilities of

search duration and for the expected value of search
17These are only su¢ cient but not necessary conditions for implementability.
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of a�i�1;k (Hk) implies that xk > a�i�1;k (Hk), and xk � ai;k (�k�1(Hk; xk)) implies

xk � a�i;k (Hk). Therefore

xk 2 (ai�1;k (�k�1(Hk; xk)) ; ai;k (�k�1(Hk; xk))] =) xk 2 (a�i�1;k (Hk) ; a�i;k (Hk)].

The result follows from the �rst part.

Recall that in the limiting case of no learning - where we know that the e¢ -

cient allocation is implementable - we have @
@xk
ai;k(�k�1) = 0: Similarly, if the cuto¤s

ai;k (�k�1(Hk; xk)) are only slightly a¤ected by the information conveyed by the signal

xk (i.e., the current optimal allocation doesn�t signi�cantly react to new information)

then the e¢ cient allocation can be implemented.18 Examples where the resulting sets

Ai;k are convex include: 1. Agents� types are uniformly distributed on the interval

[0;W ], and the designers�prior about W is a Pareto distribution P (�;R) with � > 1;

2 Agents� types distribute according to a Gamma distribution Gamma (�; �) with

unknown rate parameter �; and the designer�s beliefs about � are given by another

Gamma distribution Gamma (
; �).19

The above analysis has assumed that agents�types are independently distributed.

Even if the distribution of types is known, qualitatively similar dynamic implementa-

tion problems occur if types are correlated. In a static environment with correlated

types - where the e¢ cient allocation can always be implemented - Jacques Cremer and

Richard McLean (1985), (1988) show how the designer can extract the entire surplus

by using payments contingent on the information revealed by other agents.20 As shown

in Section I, the ability to delay payments confers more �exibility precisely because

it enables the use of contingent payments. This contrasts the insight for dynamic in-

18The �rst-best policy can be always implemented (using type-independent transfers) if the se-

quence of beliefs � = �n;�n�1; ::;�1 induces successive marginal distributions of types that form a

sub(super)-martingale. Then, the e¢ cient policy is to allocate the items successively in ascending

(descending) order of types.
19Both these examples assume conjugate priors given Bayesian learning. For more details, see

Albright (1977).
20Note though that in our framework with independent types, full surplus extraction is impossible

even if payments are delayed. For independent types, the role of posterior information and contingent

payments towards increasing revenue from sales has been pointed out by Robert G. Hansen (1985).
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dependent private values frameworks without learning where delaying payments does

not improve the ability to achieve the dynamically e¢ cient outcome (see Parkes and

Singh (2003)).

Assume then that the designer still needs to allocate the objects upon arrival, but

that he is able to delay payments until the end of stage one, the last stage. Consider

the following mechanism: upon arrival, agents report their types, and objects are

assigned according to the �rst-best allocation policy described in Theorem 4. If agent

k gets object q(j), j � 2; he pays
Pj

i=2(q(i) � q(i�1))x(i�1) where x(1); ::; x(n) represent

the ordered set of the revealed types, which is fully known at the end of stage one;

if he gets object q(1), he pays zero. It is easy to see that reporting truthfully is an

equilibrium. Thus, we obtain21:

Proposition 6 If payments can be delayed until no more arrivals occur, it is always

possible to implement the �rst-best allocation policy.

Although theoretically appealing, a delayed scheme such as the above may be

problematic in real-life situations where arrivals are separated by signi�cant periods of

time because: 1) Early agents may not even "exist" when later ones arrive; 2) It may

be di¢ cult to write contracts that cover numerous contingencies covering a distant,

uncertain future, and to execute monetary payments based on events that lie in the

distant past; 3) The last agent�s information has no e¤ect on his own allocation (both

physical and monetary), but it does in�uence the payments of all preceding agents. It

is not clear what are the incentives of this agent to report truthfully22. Moreover, this

feature is conducive to collusive agreements, and more signi�cantly so than in static

frameworks where the colluders need to jointly solve both a physical and a monetary

allocation problem under two-sided incomplete information.

21An analogous result for a much more general model has been proven by Athey and Segal (2007)

- see their Proposition 1.
22See also Mezzetti (2004).
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V. Conclusion

We have analyzed the conditions under which an e¢ cient allocation of resources is

implementable in a dynamic private values setting where the designer gradually learns

about the distribution of agents�values. Learning by the designer generates indirect

informational externalities which may destroy the incentives for truthful revelation.

E¢ cient implementation is possible only if the designer�s beliefs do not dramatically

change after each new observation. Analogous phenomena occur in a model where the

designer is completely informed about the distribution of the agents�values, but these

are interdependent. In particular, we can use an insight from Jehiel and Moldovanu

(2001) to conclude that dynamic e¢ cient implementation is generically impossible in

the model with learning if values are private and if agents�signals are multidimen-

sional. Thus, ine¢ ciency is the rule in the general dynamic model with arbitrarily

heterogenous objects unless, for each object, the decision over its assignment can be

separated from the assignment decisions over other objects. Theoretically, it is possible

to implement the e¢ cient policy if the designer is able to delay the necessary monetary

transfers after all allocation decisions have been made. Thus, for applications, it is

important to single out the frameworks where such schemes are feasible and robust.
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